Global Analysis of the Human Pathophenotypic Similarity Gene Network Merges Disease Module Components
نویسندگان
چکیده
The molecular complexity of genetic diseases requires novel approaches to break it down into coherent biological modules. For this purpose, many disease network models have been created and analyzed. We highlight two of them, "the human diseases networks" (HDN) and "the orphan disease networks" (ODN). However, in these models, each single node represents one disease or an ambiguous group of diseases. In these cases, the notion of diseases as unique entities reduces the usefulness of network-based methods. We hypothesize that using the clinical features (pathophenotypes) to define pathophenotypic connections between disease-causing genes improve our understanding of the molecular events originated by genetic disturbances. For this, we have built a pathophenotypic similarity gene network (PSGN) and compared it with the unipartite projections (based on gene-to-gene edges) similar to those used in previous network models (HDN and ODN). Unlike these disease network models, the PSGN uses semantic similarities. This pathophenotypic similarity has been calculated by comparing pathophenotypic annotations of genes (human abnormalities of HPO terms) in the "Human Phenotype Ontology". The resulting network contains 1075 genes (nodes) and 26197 significant pathophenotypic similarities (edges). A global analysis of this network reveals: unnoticed pairs of genes showing significant pathophenotypic similarity, a biological meaningful re-arrangement of the pathological relationships between genes, correlations of biochemical interactions with higher similarity scores and functional biases in metabolic and essential genes toward the pathophenotypic specificity and the pleiotropy, respectively. Additionally, pathophenotypic similarities and metabolic interactions of genes associated with maple syrup urine disease (MSUD) have been used to merge into a coherent pathological module.Our results indicate that pathophenotypes contribute to identify underlying co-dependencies among disease-causing genes that are useful to describe disease modularity.
منابع مشابه
Exploring Gene Signatures in Different Molecular Subtypes of Gastric Cancer (MSS/ TP53+, MSS/TP53-): A Network-based and Machine Learning Approach
Gastric cancer (GC) is one of the leading causes of cancer mortality, worldwide. Molecular understanding of GC’s different subtypes is still dismal and it is necessary to develop new subtype-specific diagnostic and therapeutic approaches. Therefore developing comprehensive research in this area is demanding to have a deeper insight into molecular processes, underlying these subtypes. In this st...
متن کاملLink Prediction using Network Embedding based on Global Similarity
Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...
متن کاملDetection of the “Tim” gene of sheep Giardia using “Tim” Gene primers of Giardia with human origin
Giardiasis is an important human parasitic disease. Giardia is a genus composed of binuclear flagellate protozoa. Giardia duodenalis is a parasitic species for a wide range of vertebrates, including humans. Heterogeneity in G. duodenalis has been shown by serological, biochemical, and molecular analysis. In the present study, the possible genetic similarity between Giardia in sheep and humansan...
متن کاملGene Regulation Network Based Analysis Associated with TGF-beta Stimulation in Lung Adenocarcinoma Cells
Background: Transforming growth factor (TGF)-β is over-expressed in a wide variety of cancers such as lung adenocarcinoma. TGF-β plays a major role in cancer progression through regulating cancer cell proliferation and remodeling of the tumor micro-environment. However, it is still a great challenge to explain the phenotypic effects caused by TGF-β stimulation and the effect of TGF-β stimulatio...
متن کاملGlobal gene expression analysis using microarray to study differential vulnerability to neurodegeneration
Neurodegenerative disorders such as Parkinson’s disease, motor neuron disease and Alzheimer’s disease is characterized by loss of specific cells within certain regions of the brain. One of the most compelling questions is to determine why specific cell populations are vulnerable to neurodegeneration. We addressed this question by studying global gene expression changes using an animal model of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013